Exercise 27

Solve the differential equation using the method of variation of parameters.

$$
y^{\prime \prime}-2 y^{\prime}+y=\frac{e^{x}}{1+x^{2}}
$$

Solution

Since the ODE is linear, the general solution can be written as the sum of a complementary solution and a particular solution.

$$
y=y_{c}+y_{p}
$$

The complementary solution satisfies the associated homogeneous equation.

$$
\begin{equation*}
y_{c}^{\prime \prime}-2 y_{c}^{\prime}+y_{c}=0 \tag{1}
\end{equation*}
$$

This is a linear homogeneous ODE, so its solutions are of the form $y_{c}=e^{r x}$.

$$
y_{c}=e^{r x} \quad \rightarrow \quad y_{c}^{\prime}=r e^{r x} \quad \rightarrow \quad y_{c}^{\prime \prime}=r^{2} e^{r x}
$$

Plug these formulas into equation (1).

$$
r^{2} e^{r x}-2\left(r e^{r x}\right)+e^{r x}=0
$$

Divide both sides by $e^{r x}$.

$$
r^{2}-2 r+1=0
$$

Solve for r.

$$
\begin{gathered}
(r-1)^{2}=0 \\
r=\{1\}
\end{gathered}
$$

Two solutions to the ODE are e^{x} and $x e^{x}$. By the principle of superposition, then,

$$
y_{c}(x)=C_{1} e^{x}+C_{2} x e^{x} .
$$

On the other hand, the particular solution satisfies the original ODE.

$$
\begin{equation*}
y_{p}^{\prime \prime}-2 y_{p}^{\prime}+y_{p}=\frac{e^{x}}{1+x^{2}} \tag{2}
\end{equation*}
$$

In order to obtain a particular solution, use the method of variation of parameters: Allow the parameters in the complementary solution to vary.

$$
y_{p}=C_{1}(x) e^{x}+C_{2}(x) x e^{x}
$$

Differentiate it with respect to x.

$$
y_{p}^{\prime}=C_{1}^{\prime}(x) e^{x}+C_{2}^{\prime}(x) x e^{x}+C_{1}(x) e^{x}+C_{2}(x)(x+1) e^{x}
$$

If we set

$$
\begin{equation*}
C_{1}^{\prime}(x) e^{x}+C_{2}^{\prime}(x) x e^{x}=0 \tag{3}
\end{equation*}
$$

then

$$
y_{p}^{\prime}=C_{1}(x) e^{x}+C_{2}(x)(x+1) e^{x} .
$$

Differentiate it with respect to x once more.

$$
y_{p}^{\prime \prime}=C_{1}^{\prime}(x) e^{x}+C_{2}^{\prime}(x)(x+1) e^{x}+C_{1}(x) e^{x}+C_{2}(x)(x+2) e^{x}
$$

Substitute these formulas into equation (2).

$$
\begin{aligned}
& {\left[C_{1}^{\prime}(x) e^{x}+C_{2}^{\prime}(x)(x+1) e^{x}+C_{1}(x) e^{x}+\overline{\left.C_{2}(x)(x+2) e^{x}\right]-2\left[C_{1}(x) e^{x}\right.}+\overline{\left.C_{2}(x)(x+1) e^{x}\right]}\right.} \\
&+\left[C_{1}(x) e^{x}+C_{2}(x) x e^{x}\right]=\frac{e^{x}}{1+x^{2}}
\end{aligned}
$$

Simplify the result.

$$
\begin{equation*}
C_{1}^{\prime}(x) e^{x}+C_{2}^{\prime}(x)(x+1) e^{x}=\frac{e^{x}}{1+x^{2}} \tag{4}
\end{equation*}
$$

Subtract the respective sides of equations (3) and (4) to eliminate $C_{1}^{\prime}(x)$.

$$
C_{2}^{\prime}(x) e^{x}=\frac{e^{x}}{1+x^{2}}
$$

Solve for $C_{2}^{\prime}(x)$.

$$
C_{2}^{\prime}(x)=\frac{1}{1+x^{2}}
$$

Integrate this result to get $C_{2}(x)$, setting the integration constant to zero.

$$
C_{2}(x)=\tan ^{-1} x
$$

Solve equation (3) for $C_{1}^{\prime}(x)$.

$$
\begin{aligned}
C_{1}^{\prime}(x) & =-C_{2}^{\prime}(x) x \\
& =-\left(\frac{1}{1+x^{2}}\right) x \\
& =-\frac{x}{1+x^{2}}
\end{aligned}
$$

Integrate this result to get $C_{1}(x)$, setting the integration constant to zero.

$$
\begin{aligned}
C_{1}(x) & =\int^{x} C_{1}^{\prime}(w) d w \\
& =-\int^{x} \frac{w}{1+w^{2}} d w \\
& =-\int^{1+x^{2}} \frac{1}{u}\left(\frac{d u}{2}\right) \\
& =-\frac{1}{2} \int^{1+x^{2}} \frac{d u}{u} \\
& =-\left.\frac{1}{2} \ln |u|\right|^{1+x^{2}} \\
& =-\frac{1}{2} \ln \left(1+x^{2}\right)
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
y_{p} & =C_{1}(x) e^{x}+C_{2}(x) x e^{x} \\
& =\left[-\frac{1}{2} \ln \left(1+x^{2}\right)\right] e^{x}+\left(\tan ^{-1} x\right) x e^{x} \\
& =e^{x}\left[x \tan ^{-1} x-\frac{1}{2} \ln \left(1+x^{2}\right)\right] \\
& =e^{x}\left(x \tan ^{-1} x-\ln \sqrt{1+x^{2}}\right),
\end{aligned}
$$

and the general solution to the ODE is

$$
\begin{aligned}
y(x) & =y_{c}+y_{p} \\
& =C_{1} e^{x}+C_{2} x e^{x}+e^{x}\left(x \tan ^{-1} x-\ln \sqrt{1+x^{2}}\right)
\end{aligned}
$$

where C_{1} and C_{2} are arbitrary constants.

